基础数学系学术报告
--微分几何讨论班(2023年秋第5讲)
题目:On the Willmore problem for surfaces with symmetries
报告人:王 鹏 教授(福建师范大学)
时间:2023年11月13日 16:00-17:00
地点:沙河校区J5-311
摘要:The famous Willmore conjectures states that the Clifford torus minimizes Willmore energy among all 2-tori in S^3, which was proved by Marques and Neves. For higher genus surfaces, it was conjectured by Kusner that the Lawson minimal surfaces $\xi_{g,1}$ minimizes the Willmore energy for all immersions in $S^3$ with genus g>1. We show that it holds for surfaces in S^3 which have genus g>1 and are symmetric w.r.t. the group \tilde{G}_{g,1}. Here \tilde{G}_{g,1} denotes a group generated by halfturns about some great circles of S^3, which is a subgourp of the symmetric group of \xi_{g,1}. This is based on joint works with Prof. Kusner (UMass Amherst) and Prof. Ying Lv (Xiamen Univ.)
报告人简介:王鹏,福建师范大学数学与统计学院教授,闽江学者特聘教授,博士生导师;主要研究方向为Willmore曲面与极小曲面,主持国家自然科学基金面上项目3项,青年基金1项;在J. Diff. Geom., Adv. Math., J. Reine Angew Math., Bull. London Math. Soc., Tohoku Math J., Pacific J. Math., Proc. AMS等期刊上发表学术论文20多篇。
邀请人:谢振肖、张世金