请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

学术报告

首页 >> 学术报告 >> 正文

【数学论坛及分析与偏微分方程讨论班】Hyperbolic motion in the Newtonian N-body problem with arbitrary limit shape

发布日期:2022-01-12    点击:

北航数学论坛学术报告

--分析与偏微分方程讨论班

 

Hyperbolic motion in the Newtonian N-body problem with arbitrary limit shape


Andrea Venturelli

Laboratoire de Mathématiques d'Avignon, France


报告时间:21:00-22:002022-1-17 (星期一)


Zoom829 6231 5870Password452151

会议链接: https://us02web.zoom.us/j/82962315870


摘要We prove for the N-body problem the existence of hyperbolic motions for any prescribed limit shape and any given initial configuration of the bodies. The energy level h>0 of the motion can also be chosen arbitrarily. Our approach is based on the construction of a global viscosity solutions for the Hamilton-Jacobi equation H(x,du(x))=h. Our hyperbolic motion is in fact a calibrating curve of the viscosity solution. The presented results can also be viewed as a new application of Marchal's theorem, whose main use in recent literature has been to prove the existence of periodic orbits. It is a joint work with Ezequiel Maderna.


报告人简介:Andrea Venturelli,法国Université d´Avignon教授,研究领域包含动力系统、变分法和N体问题等,在Ann. of Math. , Arch. Rat. Mech. Anal.CVPDE等著名杂志上发表多篇论文。

 

快速链接

版权所有 © 2021  十大网投靠谱网站-信誉最好的大网投平台
地址:北京市昌平区高教园南三街9号   电话:61716719