十大网投靠谱网站学术报告
--- 分析与偏微分方程讨论班(2021秋季第3讲)
题目: Some new progress on Sharp Trudinger-Moser inequality and bubbling analysis for its positive critical point
报告人: 陈露 副教授 (北京理工大学)
时间: 2021-10-25 14:30-15:30 (周一下午)
地点: 腾讯会议 ID:100 488 633
腾讯会议链接:https://meeting.tencent.com/dm/a5LaK5LgOCXf
摘要: Trudinger-Moser inequalities as the border line case of Sobolev inequalities have important applications in the fields of geometric analysis and PDEs. In this talk, I will give a survey about the history of Trudinger-Moser inequality and its important role in prescribing curvature problem and Schrodinger equation with the critical exponential growth. Then I will present some new progress on sharp Trudinger-Moser inequalities including Trace Trudinger-Moser inequalities, Trudinger-Moser involving degenerate potential and affine Trudinger-Moser inequalities, etc. Finally, Quantization theory for the critical point of Trudinger-Moser functional in compact manifold and non-compact manifold will also be discussed in this talk.
报告人简介: 陈露,北京理工大学数学与统计学院副研究员。2018年博士毕业于北京师范大学,2019年在意大利跟从国际著名的几何和变分领域的大师Malchiodi做访问学者。长期致力于研究Trudinger Moser不等式及其在几何分析与偏微分方程中的应用。相关结果发表在包括Adv. Math.、Trans. AMS、J. Funct. Anal.、Calc.Var. & PDEs、JGA、中国科学等在内的国际重要学术期刊。
邀请人:戴蔚
欢迎大家参加!