请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

学术报告

首页 >> 学术报告 >> 正文

【学术报告】 Some new progress on Sharp Trudinger-Moser inequality and bubbling analysis for its positive critical point

发布日期:2021-10-18    点击:

十大网投靠谱网站学术报告

--- 分析与偏微分方程讨论班(2021秋季第3)


题目: Some new progress on Sharp Trudinger-Moser inequality and bubbling analysis for its positive critical point

报告人: 陈露 副教授 (北京理工大学)

时间: 2021-10-25 1430-1530 (周一下午)

地点: 腾讯会议 ID100 488 633

腾讯会议链接:https://meeting.tencent.com/dm/a5LaK5LgOCXf

摘要: Trudinger-Moser inequalities as the border line case of Sobolev inequalities have important applications in the fields of geometric analysis and PDEs. In this talk, I will give a survey about the history of Trudinger-Moser inequality and its important role in prescribing curvature problem and Schrodinger equation with the critical exponential growth.  Then I will present some new progress on sharp Trudinger-Moser inequalities including Trace Trudinger-Moser inequalities, Trudinger-Moser involving degenerate potential and affine Trudinger-Moser inequalities, etc. Finally, Quantization theory for the critical point of Trudinger-Moser functional in compact manifold and non-compact manifold will also be discussed in this talk.

报告人简介: 陈露,北京理工大学数学与统计学院副研究员。2018年博士毕业于北京师范大学,2019年在意大利跟从国际著名的几何和变分领域的大师Malchiodi做访问学者。长期致力于研究Trudinger Moser不等式及其在几何分析与偏微分方程中的应用。相关结果发表在包括Adv. Math.Trans. AMSJ. Funct. Anal.Calc.Var. & PDEsJGA、中国科学等在内的国际重要学术期刊。


邀请人:戴蔚

欢迎大家参加!


快速链接

版权所有 © 2021  十大网投靠谱网站-信誉最好的大网投平台
地址:北京市昌平区高教园南三街9号   电话:61716719