请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

学术报告

首页 >> 学术报告 >> 正文

【学术报告及微分几何讨论班(2021秋季第4讲)】On Willmore Stability of minimal surfaces in spheres

发布日期:2021-10-15    点击:

微分几何讨论班20214讲)


题目:On Willmore Stability of minimal surfaces in spheres


报告人:王 鹏 教授(福建师范大学


时间:20211019 10:00-11:00


腾讯会议会议号:672 516 901


摘要:Minimal surfaces in spheres are important class of Willmore surfaces in spheres. In particular, special minimal surfaces are conjectured to minimize Willmore energy with fixed topology, which is an important topic in global differential geometry. For instance, the generalized Willmore conjecture states that the Lawson minimal surfaces \xi_{g,1} minimize the Willmore energy among all closed surfaces in spheres with genus g. When g=1, this goes back the famous Willmore conjecture which was proved by Marques and Neves for tori in 3-sphere.

In this talk we will discuss the Willmore stability of minimal surfaces in spheres. In particular, we will show that the Lawson minimal surfaces \xi_{g,1} are Willmore stable in S^3. This is a joint with Prof. Kusner.


报告人简介:王鹏,福建师范大学教授、博士生导师,闽江学者特聘教授。主要研究方向为微分几何、共形几何和Willmore曲面与极小曲面,主持国家自然科学基金面上项目2青年基金1项,在国际著名数学期刊J. Differ. Geom., Adv.Math., Bull. London Math. Soc.等杂志上发表论文20余篇。


邀请人:张世金




快速链接

版权所有 © 2021  十大网投靠谱网站-信誉最好的大网投平台
地址:北京市昌平区高教园南三街9号   电话:61716719