十大网投靠谱网站学术报告
--- 分析与偏微分方程讨论班(2023秋季第31讲)
On uniqueness of multi-bubble blow-up solutions and multi-solitons to L^2-critical NLS
苏一鸣 (浙江工业大学)
时间:2024年1月2日(周二)下午14:00-15:00
地点:#腾讯会议:840-946-595
点击链接直接加入会议:https://meeting.tencent.com/dm/jrqEMZQUsXfa
摘要: We are concerned with the focusing L^2-critical nonlinear Schrodinger equations. The uniqueness is proved for a large energy class of multi-bubble blow-up solutions, which converge to a sum of K pseudo-conformal blow-up solutions particularly with the low rate (T-t)^{0+}. Moreover, we also prove the uniqueness in the energy class of multi-solitons which converge to a sum of K solitary waves with convergence rate (1/t)^{2+}. The uniqueness class is further enlarged to contain the multi-solitons with even lower convergence rate (1/t)^{1/2+} in the pseudo-conformal space. This talk is based on a joint work with Cao Daomin and Zhang Deng.
报告人简介: 苏一鸣,浙江工业大学理学院副教授,2014年博士毕业于中国科学院数学与系统科学研究院,研究方向为偏微分方程。目前在非线性色散方程解的长时间行为上取得了若干研究成果,相关工作发表在《Arch. Ration. Mech. Anal.》,《Probab. Theory Relat. Fields》,《Trans. Amer. Math. Soc.》,《J. Funct. Anal.》等期刊上。
邀请人:戴蔚
欢迎大家参加!