请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

学术报告

首页 >> 学术报告 >> 正文

【数学论坛及分析、偏微分方程与动力系统讨论班(2024春季第3讲)】Rigidity of Steady Solutions to the Navier-Stokes Equations in High Dimensions

发布日期:2024-04-30    点击:

北航数学论坛学术报告

--- 分析、偏微分方程与动力系统讨论班(2024春季第3讲)


Rigidity of Steady Solutions to the Navier-Stokes Equations in High Dimensions


桂长峰 教授

(澳门大学)

时间:2024年5月7日(周二上午)10:00-11:00


地点:沙河主E404


摘要: The steady Navier-Stokes equations enjoy a special scaling property thanks to its nonlinear character. Several scaling-invariant classes motivated by the scaling property have proved useful in in

vestigating various properties of a solution. On the other hand, a regularity problem of the steady case in higher dimensions (especially 5D) has attracted the attention of many researchers as it is a steady version of the famous regularity problem for the 3D evolutionary case. One can examine scaling-invariant classes, a borderline case not covered by standard regularity theory, to study special scenarios of a possible singularity.

In this talk, we shall present a rigidity result to a most general scaling-invariant class and a regularity result eliminating a more general possibility of singularity for steady Navier-Stokes equations in high dimensions, which also have an implication for Liouville-type theorems in higher dimensions. This is a joint work with Jeaheang Bang, Hao Liu, Yun Wang and Chunjing Xie.


报告人简介: 桂长峰,澳门大学数学系讲座教授,数学系主任,澳大发展基金会数学杰出学者,博士生导师。1991年在美国明尼苏达大学获博士学位。桂长峰教授曾入选国家级人才计划和海外高层次人才,于2013年当选美国数学会首届会士,获得过IEEE最佳论文奖、加拿大太平洋数学研究所研究成果奖、加拿大数学中心Andrew Aisensdadt奖等荣誉。他主要从事偏微分方程理论研究,特别在Allen-Cahn方程的研究、Moser-Trudinger不等式最佳常数的猜想、De Giorgi 猜想和Gibbons 猜想等方面取得了一系列在国际上有重大影响的工作,在国际一流数学学术期刊发表论文80余篇,其中包括Annals of Mathematics, Inventiones Mathematicae等顶级期刊。


邀请人:戴蔚

欢迎大家参加!


快速链接

版权所有 © 2021  十大网投靠谱网站-信誉最好的大网投平台
地址:北京市昌平区高教园南三街9号   电话:61716719